On the Cyclic Cohomology of Extended Hopf Algebras
نویسنده
چکیده
We introduce the concept of extended Hopf algebras and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Extended Hopf algebras are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structures, including the Connes-Moscovici algebra HFM , are extended Hopf algebras.
منابع مشابه
On Cohomology of Hopf Algebroids
Inspired by [3] we introduce the concept of extended Hopf algebra and consider their cyclic cohomology in the spirit of Connes-Moscovici [3, 4, 5]. Extended Hopf algebras are closely related, but different from, Hopf algebroids. Their definition is motivated by attempting to define cyclic cohomology of Hopf algebroids in general. Many of Hopf algebra like structures, including the Connes-Moscov...
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملCyclic Cohomology of Hopf algebras and Hopf Algebroids
We review recent progress in the study of cyclic cohomology of Hopf algebras, Hopf algebroids, and invariant cyclic homology starting with the pioneering work of Connes-Moscovici.
متن کاملEquivariant Cyclic Cohomology of Hopf Module Algebras
We introduce an equivariant version of cyclic cohomology for Hopf module algebras. For any H-module algebra A, where H is a Hopf algebra with S2 = idH we define the cocyclic module C ♮ H(A) and we find its relation with cyclic cohomology of crossed product algebra A ⋊ H. We define K 0 (A), the equivariant K-theory group of A, and its pairing with cyclic and periodic cyclic cohomology of C H(A).
متن کاملBivariant Hopf Cyclic Cohomology
For module algebras and module coalgebras over an arbitrary bialgebra, we define two types of bivariant cyclic cohomology groups called bivariant Hopf cyclic cohomology and bivariant equivariant cyclic cohomology. These groups are defined through an extension of Connes’ cyclic category Λ. We show that, in the case of module coalgebras, bivariant Hopf cyclic cohomology specializes to Hopf cyclic...
متن کامل